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Abstract
We study the bipartite entanglement between a subsystem of size l and the rest
of the system of total size L as it occurs in a spin-1 Affleck–Kennedy–Lieb–
Tasaki (AKLT) chain subject to open boundary conditions. In this case, the
ground-state manifold is four-fold degenerate and there is strong dependence
on the parity of the number of spins, L. We present exact analytical results
for the von Neumann entanglement entropy, as a function of both the size of
the subsystem, l, and the total system size, L, for all four degenerate ground
states for both odd and even L. In the large l, L limits the entanglement entropy
approaches ln(2) for the Sz

T = ±1 while it approaches twice that value, 2 ln(2),
for the Sz

T = 0 states. In all cases, it is found that this constant is approached
exponentially fast defining a length scale ξ = 1/ln(3) equal to the known bulk
correlation length.

PACS number: 64.60

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum entanglement as it occurs in quantum spin chains is a property that has recently
been under intense study [1–5]. The entanglement of a system can provide information about
the properties of that system, and long-distance entanglement is thought to be necessary for
applications such as quantum teleportation [6, 7] and quantum cryptography [8]. Exact results
for the bipartite entanglement are from this perspective of considerable value.

One system displaying entanglement is that of an S = 1 antiferromagnetic chain [9]. One
generalized Hamiltonian for such a chain is given by

H = J

L−1∑
i=1

[Si · Si+1 − β(Si · Si+1)
2], (1)

where β is a dimensionless parameter describing the biquadratic coupling. When β = −1/3,
the system is at the Affleck–Kennedy–Lieb–Tasaki (AKLT) point, where the ground state of
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the system corresponds to a system where each S = 1 spin is represented as two S = 1/2
spins, and S = 1/2 spins from neighboring sites are combined into a singlet [10, 11]. One-
and two-site entanglement at the AKLT point and for more generalized models have been
studied extensively with periodic boundary conditions [12–14]. When subject to periodic
boundary conditions, the Hamiltonian, equation (1), has a nondegenerate singlet ground state
at the AKLT point [15]. Some measures of entanglement have also been studied for the
case of open boundary conditions [16–23]; in this case, the ground state of the system is
four-fold degenerate [10, 11], consisting of a singlet state, S = 0, as well as a triplet state with
S = 1, Sz

T = 0,±1. An interesting quantity to study is the bipartite entanglement entropy S(l,
L), the von Neumann entanglement of a subsystem of the chain with the rest of the chain:

S(l, L) ≡ −Trρ log ρ, (2)

where ρ is the reduced density matrix for the subsystem of size l within the total system of length
L. Similar calculations have also been performed for S = 1

2 systems [24–26]. In physical
systems well characterized as S = 1 spin chains such as NENP (Ni(C2H8N2)2NO2ClO4)
[27] and Y2BaNiO5 [28], the biquadratic term is negligible, β = 0, and impurities likely cut
the chains thereby effectively imposing open boundary conditions and restricting the length
of such finite chain segments. The presence of the open boundaries has the peculiar effect of
inducing S = 1/2 excitations localized at the ends of the chain segment [29]. The physically
most relevant point, β = 0, is in the same phase as the AKLT point, the so-called Haldane
phase. Within the Haldane phase, for β �= −1/3, the four-fold ground-state degeneracy is
lifted for finite L and is replaced by an exponentially low-lying triplet state above the singlet
ground state when the length of the system is even. For odd-length systems, the picture is
reversed and the triplet state is lowest. A complete characterization of the entanglement as it
occurs for all four states in the ground-state manifold would therefore be of interest. While
S(l, L) has been studied at the AKLT point for periodic boundary conditions by Hirano et
al [14], the only result, by Alipour et al [23], for the physically more interesting case of
open boundary conditions is for the special case l = 1 with Sz

T = ±1. In the following, we
present analytical results for the bipartite entanglement entropy for the AKLT system with
open boundary conditions, as a function of both the size of the total system, L, and the size of
the subsystem, l. We explicitly present results for all four states for both even- and odd-length
systems.

2. Calculations

In order to facilitate the calculations, it is convenient to write the ground-state wavefunction
of equation (1) in the following manner [10, 11, 30–32]:

|�〉 =
∏

i

gi, gi =
(

1√
2
|0〉i −|+〉i

|−〉i − 1√
2
|0〉i

)
. (3)

In the above equation, |0〉i , |+〉i and |−〉i are the states of the S = 1 spin at site i. The matrix
gives the four ground states of the system. The upper right and lower left entries correspond
to the states with magnetization S = 1, Sz

T = 1 and S = 1, Sz
T = −1. The two Sz

T = 0
are as written not part of total spin multiplets, and in light of the splitting of the ground-state
manifold away from the AKLT point it is therefore of interest to form total spin eigenstates
which is conveniently done by defining

|�0〉singlet = 1√
2
(ψ + SI(ψ))

|�0〉triplet = 1√
2
(ψ − SI(ψ)) ,

(4)
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where ψ is a diagonal entry in the wavefunction matrix, and SI is the spin inversion operator.
We can use this wavefunction to calculate S(l, L). First, we break the spin chain into two
subchains, A and B. We denote the number of spins in A by l, compared to the total number
of spins L. To find S(l, L), we must first find the reduced density matrix, given by

ρij =
∑

j

a
†
ij ai ′j , (5)

where i and i ′ run over all possible configurations of subsystem A, and j runs over all possible
configurations of subsystem B. We can then diagonalize ρ and compute S(l, L). Given the
simple matrix product form of the ground states, equation (3), it is possible to obtain explicit
expressions for ρ using transfer matrix techniques. Though the reduced density matrix is
large, it can be reduced to either a 2 × 2 or 4 × 4 matrix, reflecting the fact that the allowed
states for subsystem A is often severely limited.

3. Results

3.1. S(l = 1, L), L even and odd

We begin our calculations by looking at the case where l, the size of subsystem A, is one. We
have found that of the four degenerate ground states, two (the S = 1, Sz

T = ±1 states) have the
same entanglement entropy by spin inversion symmetry. We, therefore, have three different
cases to consider.

3.1.1. S = 1, Sz
T = ±1. In the following, we explicitly consider the Sz

T = 1 state of the
triplet. We use equation (3) to find the wavefunction and subsequently the reduced density
matrix for each of the four ground states. We find that the reduced density matrix has only
two eigenvalues, one of which is the probability, x, of a configuration containing the first spin
(comprising all of subchain A) in a |+〉 state, and the remainder of the chain (subchain B) in
a state with Sz

T B = 0, and the other is the probability, 1 − x, of the first spin being in a |0〉
state and the remainder of the chain having Sz

T B = 1. For the Sz
T = 1 state, configurations

with the first spin in a |−〉 state do not occur at the AKLT point; hence, the probability, x, is
simply the on-site magnetization of the first element of the chain,

〈
Sz

1

〉
, which has previously

been determined for both even and odd L [33]:

x =
2
3 − 2(−3)−L

1 − (−3)−L
(any L). (6)

The reduced density matrix for the subsystem now takes the form

ρ =
[
x 0
0 1 − x

]
. (7)

This leads to the final equation for the von Neumann entropy:

S(l = 1, L) = −x ln(x) − (1 − x) ln(1 − x), (any L) (8)

in agreement with the prior results by Alipour et al [23]. Interestingly, we have here related
S(l = 1, L) directly to

〈
Sz

1

〉
an experimentally measurable quantity. The result is a solution that

converges exponentially fast with L toward a final value of C = −(2/3) ln(2/3)−(1/3) ln(1/3)

as shown in figure 1. The exponential form allows for a determination of a length scale which
from equations (6) and (8) is seen to be ξ = 1/ln(3) equal to the known bulk correlation length
of 1/ln(3) [31] at the AKLT point.
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Figure 1. The entanglement entropy of the system when l = 1, as a function of L, for the
S = 1, Sz

T = 1 state. The inset shows the convergence of the entropy toward its final value of
C = −(2/3) ln(2/3) − (1/3) ln(1/3). The entropy converges exponentially with a constant of
ln(3), which implies a correlation length of 1/ln(3) in this system.

3.1.2. S = 0, Sz
T = 0. We now turn to a discussion of the first of the two Sz

t = 0 states.
We note that the lower diagonal entry of equation (3) is the spin inverse of the upper diagonal
entry for even values of L. For odd L, the lower diagonal entry is the spin inverse of the upper
diagonal entry times a factor of −1. This means that the singlet state when L is even and the
Sz

t = 0 triplet state when L is odd are given by the trace of equation (3). In this case, we find
for l = 1 simply a constant independent of L:

S(l = 1, L) = ln(3) (L even). (9)

In this case, the reduced density matrix is a 4 × 4 matrix with the following form:

ρ =

⎡
⎢⎢⎣

x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 1 − x

⎤
⎥⎥⎦ , (10)

where in the case of l = 1, x is equal to 1/3.
In the case where L is odd, the wavefunction is given by the upper left element of

equation (3) minus the lower right element. This yields the following expression for the
entanglement entropy of the singlet state when L is odd:

x = (1 − (−3)−L+1)

3(1 − (−3)−L)
(L odd)

S(l = 1, L) = −2x ln(x) − (1 − 2x) ln(1 − 2x).

(11)

In this case, S(l = 1, L) now approaches the constant ln(3) exponentially with L.

3.1.3. S = 1, Sz
T = 0. Using the same arguments as for the S = 0 case, we see that for even

L the wavefunction is given by the upper left element of equation (3) minus the lower right

4



J. Phys. A: Math. Theor. 43 (2010) 185304 S D Geraedts and E S Sørensen

element, which produces the following result:

x = (1 − (−3)−L+1)

3(1 − (−3)−L)
(L even)

S(l = 1, L) = −2x ln(x) − (1 − 2x) ln(1 − 2x),

(12)

the same result we found for odd L for the S = 0 state. The reduced density matrix is still a
4 × 4 matrix, but it has the form

ρ =

⎡
⎢⎢⎣

x 0 0 0
0 x 0 0
0 0 y 0
0 0 0 1 − 2x − y

⎤
⎥⎥⎦ , (13)

where for l = 1, y = 0.
In the present case, for odd L, the wavefunction is given by the trace of equation (3), so

the entanglement entropy is given by the formula of Hirano et al:

S(l = 1, L) = ln(3) (L odd). (14)

To summarize, we have found that S(l = 1, L) approaches either −(2/3) ln(2/3) −
(1/3) ln(1/3) or ln(3) in some cases in an exponential manner with L, in other cases the result
S(l = 1, L) is independent of L.

3.2. S(l, L), L even

We now generalize our results to any size l of subsystem A, with L even.

3.2.1. S = 1, Sz
T = ±1. Since the entanglement is the same for Sz

T = ±1, we in the
following take Sz

T = 1. In the case of Sz
T = 1, we find that ρ again has two eigenvalues. One

is the probability of finding the system in a state such that the total magnetization of subsystem
A Sz

T,A = 1, and the total magnetization of subsystem B Sz
T,B = 0. The other is the opposite

case: Sz
T,A = 0, Sz

T ,B = 1. If we denote the first eigenvalue by x, then the von Neumann
entropy is given by equation (8), and the reduced density matrix has the form of equation (7).
The value x at any l is given by

x = (1 − (−3)−l )(1 + (−3)−L+l )

2(1 − (−3)−L)
(L even)

S(l, L) = −x ln(x) − (1 − x) ln(1 − x).

(15)

This result is plotted as a function of l when L = 12 in figure 2. At L = 2l, this gives a result
of exactly S(l = L/2, L) = ln(2) independent of L. We also note that when l and L are both
large, S(l, L) converges to ln(2) again in an exponential manner on a length scale of 1/ln(3).
This asymptotic value of the entanglement entropy seems natural since in the present case the
boundary of subsystem A will cut a single valence bond resulting in a contribution of ln(2) to
the entanglement entropy.

3.2.2. S = 0, Sz
T = 0. In the case where L is even, the wavefunction is given by the trace

of equation (3), so the reduced density matrix is given by equation (10) and the entanglement
entropy is given by the following formula [14]:

x = (1 − (−3)−l )(1 − (−3)−L+l )

4(1 − (−3)−L+1)
(L even)

S(l, L) = −3x ln(x) − (1 − 3x) ln(1 − 3x).

(16)
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Figure 2. The entanglement entropy for the S = 1, Sz
T = 1 state as a function of l when L = 12

(equation (15)). The open circles indicate the corresponding exact diagonalization results used as
a check. The inset shows the convergence of our data toward its final value of ln(2). The entropy
therefore converges exponentially as l → L/2.

Two of the degenerate eigenvalues correspond to the probabilities of subsystem A having
Sz

T,A = ±1, and the sum of the remaining degenerate eigenvalue and the nondegenerate
eigenvalue is the probability of subsystem A having Sz

T,A = 0. Strikingly, in this case
the entanglement entropy quickly approaches 2 ln(2) for large l, L, twice the result for the
S = 1, Sz

T = ±1 states. As above, we can argue that this asymptotic value of the entanglement
entropy is natural since in addition to cutting a single valence bond at the boundary, the
subsystem now also cuts the singlet formed by the two effective S = 1/2 chain boundary
excitations resulting, in a contribution of 2 ln(2) to the entanglement entropy. It is possible to
argue that the result, equation (16), is independent of the boundary conditions and the above
result does agree with previous results for periodic boundary conditions [14].

3.2.3. S = 1, Sz
T = 0. In this case, the reduced density matrix now has four eigenvalues and

is given by equation (13). The two degenerate eigenvalues correspond to the probability of
subsystem A being in a state with Sz

T,A = ±1. The sum of the nondegenerate eigenvalues is
the probability that Sz

T,A = 0. We then find the following equation:

x = (1 − (−3)−l )(1 − (−3)−L+l )

4(1 − (−3)−L)
(L even)

y = (1 − (−3)−l )(1 − (−3)−L+l+1)

4(1 − (−3)−L)

S(l, L) = −2x ln(x) − y ln(y) − (1 − 2x − y) ln(1 − 2x − y).

(17)

Again we observe that the asymptotic value of the entanglement entropy is 2 ln(2). Hence,
we have explicitly shown the three states of the triplet S = 1, Sz

T = 0,±1, only the two
Sz

T = ±1 states related by spin inversion yield the same entanglement entropy while the
S = 1, Sz

T = 0 state not only differs by an overall factor of ln(2) but also in subleading
terms. The results of equations (16) and (17) are plotted in figure 3 where they are compared

6
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Figure 3. The entanglement entropy for the S = 0, Sz
T = 0 state (red) and the S = 1, Sz

T = 0
state (purple) as a function of l when L = 12 (equation (15)). The open symbols indicate the
corresponding exact diagonalization results used as a check. The inset shows the convergence of
the analytical data to the final value of 2 ln(2).

with exact diagonalization results. Recent work [34] has suggested that the Haldane phase is
characterized by two-fold degeneracy in the eigenvalues of the reduced density matrix of the
ground state, which is consistent with these findings.

3.3. S(l, L), L odd

As before when we detailed the S(l = 1, L) case we expect rather strong dependence on
the parity of L for the general S(l, L). For completeness, we now give the equations for the
entanglement entropy also in this case.

3.3.1. S = 1, Sz
T = ±1. In this case, there is no dependence on the parity of L and the result

is the same as for even L given in equation (15).

3.3.2. S = 0, Sz
T = 0. By the same arguments as the l = 1 case, the entanglement entropy

for odd L is given by

x = (1 − (−3)−l )(1 − (−3)−L+l )

4(1 − (−3)−L)
(L odd)

y = (1 − (−3)−l )(1 − (−3)−L+l+1)

4(1 − (−3)−L)

S(l, L) = −2x ln(x) − y ln(y) − (1 − 2x − y) ln(1 − 2x − y).

(18)

3.3.3. S = 1, Sz
T = 0. Similarly, the wavefunction for S = 1, Sz

T = 0, L odd is given by the
trace of equation (3), and so the entanglement entropy is

x = (1 − (−3)−l )(1 − (−3)−L+l )

4(1 − (−3)−L+1)
(L odd)

S(l, L) = −3x ln(x) − (1 − 3x) ln(1 − 3x).

(19)
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4. Conclusions

We have obtained explicit analytical equations for the bipartite entanglement entropy of a
spin-1 chain at the AKLT point for all four states of the ground-state manifold. For the case
where S = 1, Sz

T = ±1, we have found that for large system sizes the entanglement entropy
approaches ln(2) while for the S = 0, Sz

T = 0 and S = 1, Sz
T = 0 cases, the entanglement

entropy approaches 2 ln(2). Hence, the entanglement entropy is in this case not SU(2)

invariant. In all cases where there is an explicit l or L dependence, we have found that the
asymptotic value is approached in an exponential manner defining a length scale of ξ = 1/ln(3)

equal to the bulk correlation length. Also of interest are the time-reversal and spin-reversal
invariant states |φ〉 = |+1〉 ± |−1〉. Exact calculations of the entanglement entropy of these
states for small L suggest that their entanglement entropy converges toward 2 ln(2), which is
consistent with the interpretation that each factor of ln(2) corresponds to a cutting of a bond.
We have so far been unable to obtain an explicit formula for the entanglement entropy of these
states.
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